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1 Appendix : leaky integrator
Given a series of observations {xi0}0≤i≤t with ∀i, xi0 ∈ {0, 1}, we defined

x̂t1 = (1− 1/τ)t+1 · x̂t=0
1 + 1/τ ·

∑
0≤i≤t

(1− 1/τ)i · xt−i0

= (1− h)t+1 · x̂t=0
1 + h ·

∑
0≤i≤t

(1− h)i · xt−i0

If we write it for trial t− 1, we have

x̂t−1
1 = (1− h)t · x̂t=0

1 + h ·
∑

0≤i≤t−1
(1− h)i · xt−1−i

0

= (1− h)t · x̂t=0
1 + h ·

∑
1≤j≤t

(1− h)j−1 · xt−j0

(1− h) · x̂t−1
1 = (1− h)t+1 · x̂t=0

1 + h ·
∑

1≤i≤t

(1− h)i · xt−i0

It follows that the integrative formula above becomes an iterative relation:

x̂t1 = (1− h)t+1 · x̂t=0
1 + h ·

∑
0≤i≤t

(1− 1/τ)i · xt−i0

= (1− h)t+1 · x̂t=0
1 + h · xt0 + h ·

∑
1≤i≤t

(1− h)i · xt−i0

= h · xt0 + (1− h) · x̂t−1
1
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such that finally

x̂t1 = (1− h) · x̂t−1
1 + h · xt0

As a result, the definitions in Equations (2) and (3)are equivalent.

2 The Bernoulli, binomial and Beta distributions
Let us define some basic concepts. A Bernoulli trial is the outcome of a binary random variable x
knowing a probability bias µ (with 0 ≥ µ ≥ 1) and can be formalized as:

Pr(x|µ) = µx · (1− µ)1−x

The binomial distribution is defined as the probability that the sum X of ν independent Bernoulli
trials is k:

Pr(k; ν, µ) = Pr(X = k) =
(
ν

k

)
· µk · (1− µ)ν−k

Knowing such a model for X, it can be of interest to find an estimate of the parameter of the
Bernoulli trial, that is of the probability bias µ. This distribution function is called the conjugate of
the binomial distribution which is the Beta-distribution. For example, the beta distribution can be
used in Bayesian analysis to describe initial knowledge concerning probability of success such as
the probability that a product will successfully complete a stress test. The beta distribution is a
suitable model for the random behavior of percentages and proportions.

It is usually defined using shape parameters α and β:

Pr(p|α, β) = 1
B(α, β) · p

α−1 · (1− p)β−1

Note that here, the variable is the probability bias p. The normalization constant B(α, β) is given
by the beta function. By definition:

α = µ · ν
β = (1− µ) · ν

Inversely, α+ β = ν and µ = α
α+β = 1− β

α+β

3 Appendix 2: BBCP algorithm
To summarize, the algorithm that we presented is an implementation of the “Bayesian Online
Changepoint Detection” by ? extended for the class of binary inputs. Using the definition of the
run-length (see Section “Binary Bayesian Change-Point (BBCP) detection model” in the main text),
the flow-chart of the algorithm is:

1. Initialize

• P (r0 > 0) = 0 or P (r0 = 0) = 1 and
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• µ
(0)
0 = µprior and ν(0)

0 = νprior

2. Observe New Datum xt0 ∈ {0, 1},

(a) Evaluate Predictive Probability π(r)
t = P (xt0|µ

(r)
t , ν

(r)
t ).

(b) Calculate Growth Probabilities P (rt = rt−1 + 1, x0:t) = P (rt−1, x0:t−1)π(r)
t (1− h),

(c) Calculate Changepoint Probabilities P (rt = 0, x0:t) =
∑
rt−1

P (rt−1, x0:t−1)π(r)
t · h,

(d) Calculate Evidence P (x0:t) =
∑
rt−1

P (rt, x0:t),
(e) Determine run-length Distribution P (rt|x0:t) = P (rt, x0:t)/P (x0:t).

3. Update sufficient statistics

• at a switch µ(0)
t+1 = µprior, ν(0)

t+1 = νprior,

• else, ν(r+1)
t+1 = ν

(r)
t + 1 and ν(r+1)

t+1 · µ(r+1)
t+1 = ν

(r)
t · µ

(r)
t + xt0.

4. Return to step 2.

In the following, we detail some intermediate steps and highlight some key differences with their
implementation. We also provide a python implementation of the algorithm, which is available at
https://github.com/laurentperrinet/bayesianchangepoint.

3.1 Initialization
Note that the prior distribution is itself a Beta distribution: P ∝ B(p;µprior, νprior). It will by
symmetry be unbiased: µprior = .5. Concerning the shape, it can be for instance the uniform
distribution U on [0, 1], that is νprior = 2 or Jeffrey’s prior J , that is νprior = 1. We chose the
latter for the generation of trials as the uniform distribution would yield more samples around
p = .5. Qualitatively, this would result in more difficult task in discriminating a probability bias
from another. Jeffrey’s prior was more adapted to that task.

3.2 Prediction: run-length distribution
The steps to achieve the update rule are:

Pr(xt0|x0:t−1
0 ) =

∑
rt

Pr(xt0|rt, x0:t−1
0 ) · β(r)

t

Pr(xt0|x0:t−1
0 ) =

∑
rt

Pr(xt0|rt, x0:t−1
0 ) · Pr(rt|x0:t−1

0 )

with Pr(rt|x0:t−1
0 ) ∝

∑
rt−1

Pr(rt|rt−1) · Pr(xt0|rt−1, x0:t−1
0 ) · Pr(rt−1|x0:t−2

0 )

Finally we obtain Equation (5):

β
(r)
t ∝

∑
rt−1

Pr(rt|rt−1) · Pr(xt0|rt−1, x0:t−1
0 ) · β(r)

t−1
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3.3 Prediction: sufficient statistics
The recursive formulation in Equations (9) and (10)comes from the expression

ν
(r)
t · µ

(r)
t =

t−1∑
i=t−r−1

xi0

and therefore

ν
(r+1)
t+1 · µ(r+1)

t+1 =
t+1−1∑

i=t+1−r−1−1
xi0

=
t∑

i=t−r−1
xi0

= ν
(r)
t · µ

(r)
t + xt0

3.4 Quantitative evaluation
To quantitatively evaluate our results with respect to another probability bias, we computed in
Equation (13) the cost as the Kullback-Leibler divergence KL(p̂|p) between samples p̂ and model p
under the hypothesis of a Bernoulli trial:

KL(p̂|p) = p̂ · log
(
p̂

p

)
+ (1− p̂) · log

(
1− p̂
1− p

)
. (1)

4 Appendix: likelihood function
We want to compute L(r|o) = Pr(o|p, r) where o ∈ {0, 1} such that we can evaluate Predictive
Probability π0:t = P (xt0|µ

(r)
t , ν

(r)
t ) in the algorithm above with µ(r)

t and ν(r)
t the sufficient statistics

at trial t for node (r). The likelihood of observing o = 1 is that of a binomial (conjugate of a Beta
distribution) of

• mean rate of choosing hypothesis o = 1 equal to p·r+o
r+1 ,

• number of choices where o = 1 equals to p · r + 1.

More generally, by observing o, the new rate is p′ = p·r+o
r+1 .

4.1 Mathematical derivation
The likelihood will give the probability of this novel rate given the known parameters and their
update (in particular r′ = r + 1):
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L(r|o) = (p · r + o

r + 1 )
p·r+o

· (1− p · r + o

r + 1 )r+o−(p·r+o)

= 1
(r + 1)r+1 · (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o

since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1} is equal to

L(r|o) = L(r|o)
L(r|o = 1) + L(r|o = 0)

= (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o

(p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r + (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1

= (1− o) · (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1 + o · (p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r

(p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r + (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1

This can also be written by isolating the part which depends on o and for a given run-length and
knowing sufficient statistics describing the sufficient statistics at each node r:

L(r|o) = 1
Z
· (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o (2)

with Z such that L(r|o = 1) + L(r|o = 0) = 1, that is Equation (11).

4.2 Python code

def likelihood(o, p, r):
"""
Knowing $p$ and $r$, the sufficient statistics of the beta distribution $B(\alpha,

\beta)$ :
$$

alpha = p*r
beta = (1-p)*r

$$
the likelihood of observing o=1 is that of a binomial of

- mean rate of choosing hypothesis "o=1" = (p*r + o)/(r+1)
- number of choices where "o=1" equals to p*r+1

since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1}
is equal to

"""
def L(o, p, r):

P = (1-o) * ( 1. - 1 / (p * r + 1) )**(p*r) * ((1-p) * r + 1)
P += o * ( 1. - 1 / ((1-p) * r + 1) )**((1-p)*r) * (p * r + 1)
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return P

L_yes = L(o, p, r)
L_no = L(1-o, p, r)
return L_yes / (L_yes + L_no)

See the code online at https://github.com/laurentperrinet/bayesianchangepoint.

4.3 Properties
This function has some properties, notably symmetries:

• for certain outcomes, ∀r > 0, L(o|p = 0, r) = 1− o and L(o|p = 1, r) = o,

• if r = 0, the likelihood is uniform L(o) = 1/2,

• Pr(o|p, r) = Pr(1− o|1− p, r).

Note also that as r grows, the likelihood gets sharper.
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